Pcf Theory

نویسنده

  • MENACHEM KOJMAN
چکیده

The abbreviation “PCF” stands for “Possible Cofinalities”. PCF theory was invented by Saharon Shelah to prove upper bounds on exponents of singular cardinals. The starting point of PCF theory is in the realization that the usual exponent function is too coarse for measuring the power set of singular cardinals. Consider the cardinal אω, which is the smallest singular cardinal and has countable cofinality. The usual exponent (אω) א0 measures the total number of countable subsets of אω and is larger than אω itself by straightforward diagonalization. The exponent (אω) א0 clearly satisfies (אω) א0 ≥ 20 and therefore has no upper bound in the list {אα : α ∈ On} of cardinal numbers (because 20 itself has none). The main conceptual change that PCF theory has generated lies in the fact that the number of countable subsets of אω which is required to cover all countable subsets of אω is always bounded by אω4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 D ec 1 99 5 The A , B , C of pcf : a companion to pcf theory , part

This paper is intended to assist the reader learn, or even better, teach a course in pcf theory. Pcf theory can be described as the journey from the function i — the second letter of the Hebrew alphabet — to the function א, the first letter. For English speaking readers the fewer the Hebrew letters the better, of course; but during 1994-95 it seemed that for a group of 6 post doctoral students ...

متن کامل

D ec 1 99 5 A ZFC Dowker space in א ω + 1 : an application of pcf theory to topology

The existence of a Dowker space of cardinality אω+1 and weight אω+1 is proved in ZFC using pcf theory.

متن کامل

A ZFC Dowker space in אω+1: an application of pcf theory to topology

The existence of an אω+1-Dowker space is proved in ZFC using pcf theory.

متن کامل

Duality and the pcf theory

We consider natural cardinal invariants hm n and prove several duality theorems, saying roughly: if I is a suitably definable ideal and provably cov(I) ≥ hm n , then non(I) is provably small. The proofs integrate the determinacy theory, forcing and pcf theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001